Рейтинг@Mail.ru

Открытый вопрос

Оценить: 1 2 3 4 Средний рейтинг: 0.00 / 0 Проголосовавших

click

lola2110

+
-

Гипербола - так научным языком называется график функции, не проходящий через начало системы координат и представляет собой две кривые линии, проходящие параллельно друг другу.

565

Вам понадобится

карандаш,линейка,тетрадь

Инструкции

1. Гиперболу можно построить двумя способами. Один их них основан на построении гиперболы по прямоугольнику, а другой способ по графику функции f(x) = k/x. Гиперболу можно построить двумя способами. Один из них заключается в построении по прямоугольнику, а другой, более распространенный - по графику функции f(x)=k/x.


2. Строим прямоугольник с концами по оси х, под названиями А1 и А2, а противоположные концы по оси y, именуем их B1 и B2. Рисуем прямоугольник и проводим через его центр две диагонали, которые являются асимптотами графика. Строим одну ветвь гиперболы, а потом аналогично и вторую. Функция возрастает на промежутке [a;∞], следовательно, ее асимптотами будут: y=bx/a; y=-bx/a. Уравнение гиперболы приобретает вид:
y =b/a √ x^2 -a^2


3. Второй способ построения по функции f(x)=k/x. Будем строить по точкам, помня, что k – имеет постоянное значение, а знаменатель x≠0, отсюда следует вывод, что график не будет проходить через начало координат. Соответственно, интервалы функции равны (-∞;0) и (0;∞), так как при значении x =0 функция теряет смысл.


Полезные советы

При большем значении x функция f(x) убывает, а при меньшем возрастает.

Обратите внимание

Когда значение х приближается к нулю условие у выполняется.

Ответил lola2110 1 месяц назад Пожаловаться

Добавить комментарий

Оценить: 1 2 3 4 Средний рейтинг: 0.00 / 0 Проголосовавших


Данную страницу никто не комментировал. Вы можете стать первым.

Ваше имя:

Комментарий:
Введите символы: *
captcha
Обновить

Нашли ответ на свой вопрос?
Помогите и другим пользователям: